- 小径钻头
- 帖子创建时间:2008-09-22 评论:1 浏览:1132
-
外径小于3.175mm的钻头,称为微钻。要使微钻在加工中发挥高效率,因考虑一系列因素:如钻头本身的各项要素、加工参数、孔深、安装的完善性及工件的结构等。要把这些相互影响又对钻削过程十分敏感的因素处理好,需要有科学的创新精神。 在很多场合,使用微钻你得边琢磨边干。
尽管目前工具制造商已经在微钻的材料和几何参数方面完成了很多开发,不需要每件事都从头试验,但是要把钻削过程中诸多因素都加以很好控制,仍然不是一项简单的工作。
微钻的长径比显著加大
钻头的长度和直径之比越大,其弯曲倾向增加。减小长径比,可以减小挠曲力,从而避免钻头折断、孔径误差加大。较深的孔要求钻头有较大的长径比。通常孔深*过3倍直径就是“深孔”,而微钻的孔深一般都要*过这个限度。
如直径为1.755mm的钻头加工孔深17.55mm的孔,长径比达10:1;而直径为0.508mm的钻头加工孔深25.4mm的孔,其长径比达到50:1。所以,随着钻头直径减小和脆性的增加,挠曲便成为产生很多问题的根源。而控制钻头的脆性,就要在刀具基体的硬度和韧性之间加以权衡。
一般说来,高速钢钻头容许有一定的挠度并能承受相应的弯曲力,但是,高速钢具有的这种弹性变形能力和较低的硬度,也使其耐磨性降低,从而限制了刀具的寿命。
而硬质合金则具有高刚性和高硬度,所以能使刀具寿命较长、加工精度较高。
硬质合金的高耐磨性使其制成微钻后速度达到高速钢的3倍,且寿命也能提高;同时,硬质合金的高刚性有助于正确定位和保持孔的尺寸。 然而,硬质合金也不是**的,刚性高会使其容易崩裂。
用M35钴高速钢做微型钻头,可以在硬质合金和普通高速钢(M2、M7)之间取得较好的折衷。切削时在孔中产生热,加上刀具的辗压,使切削刃变钝,并划出沟道,*终导致工具损坏。而较高的含钴量,使M35的抗热性增加,并能较长时间保持刀刃锋利。
此外,硬质合金钻头需要仔细地安装和使用,精确的同心度特别重要,因为不同心造成的侧向负荷会导致钻头崩裂。
应尽量在钻头旋转的机床(如加工中心)上使用微钻,因为加工中心的主轴能给予钻头正确的中心线定位,而车床上工件的偏心会导致钻头挠曲。因此,假如在车床上使用微钻,则必须把每个影响同心度的因素事先调整好,特别对硬质合金钻头更要注意,因其不能适应弯曲变形。
假如在车床上使用微钻,*好把刀具转塔的安装孔重新镗一刀,并且使用可调式镗孔刀夹,以便把钻头和工件的同心度调至*佳状态。
要把刀夹的跳动降至*小限度。为此,应可以选择热缩性刀夹,其次是液压刀夹。要求刀夹套筒端面处的*大跳动值在0.005~0.0076mm范围内。
消除初始定心误差
任何钻头工作时,开始几转至关重要。因为开始切削时,钻头承受偏心力。此外,工件表面的不规则形状会引起横向滑步,导致钻头弯曲、折断,或者至少是增大孔的偏差。
对于直径3mm以下的钻头,先用刚性好的定心钻打一个深度为1~2倍直径的初始孔。定心钻的钻尖*角应等于或大于*终钻孔的微钻*角。若定心钻的*角较小,则随后微钻切入时,两切削刃比良好先接触工件,容易引起崩刃。
如果不用定心钻,则可采用这样的方法:使微钻开始切入时的进给量远低于随后的正常进给量。例如钻头直径1.613mm,孔深12.7mm,正常进给量规定为0.0508mm/r,开始用0.0127mm/r的进给量推进0.254mm,也可推进到刃带开始接触工件,然后再转为正常进给。这种办法同样可防止钻头滑步。
微钻使用中的另一挑战是要尽量提高转速,以发挥生产潜力,但就*大转速规范而言,钻头往往走在机床的前面。有的机床在其*高转速下运行,仍未达到微钻的*佳切削速度。例如直径为1mm的钻头,切削速度达到91.44m/min,要求机床主轴转速达到28000r/min。
被加工材料的硬度,对于确定微钻切削速度和进给量的初始推荐值有很大影响。例如,用直径为1.32mm的整体硬质合金钻头加工1018低碳钢(20HRC)时,其切削速度选用91.44m/min,进给量选用0.038mm/r。但是该钻头加工塑料和合成材料时,切削速度可达198.12m/min,进给量达0.127mm/r。加工难加工材料(如镍基合金、钛合金)时,切削速度仅为15.24~18.29m/min,进给量仅为0.0305mm/r。
分步钻孔序列
通常,钻削微型深孔采用分步钻孔序列,即周期性退出钻头,以便折断切屑,防止堵塞。分步钻孔也有助于防止在孔底持续挤压,这一点在加工冷作硬化材料时尤为重要。
分步切削就得把钻头完全退出来,其实不然。若采用中断进给(几转或短时),同样可以断屑。另外,完全退出钻头还易产生喇叭口以及将部分切屑留在孔内,所以不得不对其再切削。这些情况都是不希望出现的。
许多问题往往发生在钻孔深度的最后20%这一段内。这是因为随着孔的逐渐加深、切屑排出十分困难的原因所致。具体的解决办法因工件及材料的状况而异。应用工程师应按具体情况确定分步切削方案。
谈到加工线路板的微钻,虽然从钻头材质和直径大小来看,同设计用于加工韧性材料的微钻十分相似,但是,两者的切削几何参数却有很大差异。
有些线路板钻头制成所谓“阶梯式柄部。”例如,一支直径为0.255mm的钻头,钻削孔深为2.55mm,槽全长也制成2.55mm,但钻头工作部分直径不直接从槽尾连接到直径3.175mm的柄部,而是通过一个1.275mm中间直径加以过渡。对此,钻削韧性材料时,钻头伸出长度应尽量短,所以加一段过渡直径的结构是不可取的。
从几何参数的角度来看,线路板钻头通常采用较大的螺旋角,沟槽截面尺寸也较其它微钻薄。而对于加工不锈钢和其它难加工材料的微钻,则采用较小的螺旋角和较厚的沟槽截面尺寸。他还指出,为了减小微钻上的应力,制成倒锥——直径向柄部方向减小——是十分必要的。倒锥量一般为0.005~0.127mm。因为钻头槽长常小于25.4mm,所以每25.4mm长度上的倒锥通常为0.0127~0.0254mm。只要钻孔有深度,就需要倒锥度。特别是对钛合金等加工中出现“回缩”的材料,若没有适当的倒锥度,钻头将被胶结在孔里。
为克服钛合金加工时“回缩”现象,钻头钻尖处径向跳动处于公差上限,这样在钻孔时扩张量较大,工件“回缩”也不至于抱住钻头。
内冷却效果好
实践证明,采用内冷却钻头对提高深孔加工的生产率十分有效。它的优点不仅在于把切削液直接送到钻尖处,起冷却作用,而且还能发挥强制排屑和帮助断屑的作用。在孔深大于3倍直径时,采用内冷却钻头加工时其效果更为明显,但迄今为止,内冷却钻头往往限于直径3mm以上的钻头。
小孔带来大挑战
在内冷却微钻的应用方面,你必须懂得所选用的冷却液和刀具几何角度能带来什么效果。
内冷却微钻的主要优点是可提高刀具寿命和切削速度。与不用冷却液的硬质合金钻头相比,内冷却钻头的刀具寿命提高到3倍,切削速度提高30%,具体随工件材料而异。
对于长期应用微钻的场合,对整个切削系统的每一个要素加以优化则显得格外重要。
对于小批量生产,可使用价格低廉的标准工具。但对于特定产品的大批量生产,生产车间应对整个工序流程进行分析和优化。
对于某种特定的工件材料,采用*的钻头、钻尖几何参数、槽长、螺旋角以及柄部的直径和长度,可以获得*佳的使用效果。若再对使用钻头的机床进行认真分析,将会使生产率进一步提高。
列举一个例子:在一台机床上,用一直径为0.0381mm的钻头加工一种不锈钢零件,工件和刀具的转速均为5000r/m,反向旋转。如对加工过程进行改进,调整机床的同心度,结果生产率成倍提高。
实践证明,要想提高生产率,就得花时间、金钱,加上积极工作。不花费力气,就不会有收获。 - 文章标签:
-
快速评论您好,您还未登录,暂时还不能评价,请先登录
-
rstool 2008-09-22楼 0踩 0赞 回复 引用
外径小于3.175mm的钻头,称为微钻。要使微钻在加工中发挥高效率,因考虑一系列因素:如钻头本身的各项要素、加工参数、孔深、安装的完善性及工件的结构等。要把这些相互影响又对钻削过程十分敏感的因素处理好,需要有科学的创新精神。 在很多场合,使用微钻你得边琢磨边干。
尽管目前工具制造商已经在微钻的材料和几何参数方面完成了很多开发,不需要每件事都从头试验,但是要把钻削过程中诸多因素都加以很好控制,仍然不是一项简单的工作。
微钻的长径比显著加大
钻头的长度和直径之比越大,其弯曲倾向增加。减小长径比,可以减小挠曲力,从而避免钻头折断、孔径误差加大。较深的孔要求钻头有较大的长径比。通常孔深*过3倍直径就是“深孔”,而微钻的孔深一般都要*过这个限度。
如直径为1.755mm的钻头加工孔深17.55mm的孔,长径比达10:1;而直径为0.508mm的钻头加工孔深25.4mm的孔,其长径比达到50:1。所以,随着钻头直径减小和脆性的增加,挠曲便成为产生很多问题的根源。而控制钻头的脆性,就要在刀具基体的硬度和韧性之间加以权衡。
一般说来,高速钢钻头容许有一定的挠度并能承受相应的弯曲力,但是,高速钢具有的这种弹性变形能力和较低的硬度,也使其耐磨性降低,从而限制了刀具的寿命。
而硬质合金则具有高刚性和高硬度,所以能使刀具寿命较长、加工精度较高。
硬质合金的高耐磨性使其制成微钻后速度达到高速钢的3倍,且寿命也能提高;同时,硬质合金的高刚性有助于正确定位和保持孔的尺寸。 然而,硬质合金也不是**的,刚性高会使其容易崩裂。
用M35钴高速钢做微型钻头,可以在硬质合金和普通高速钢(M2、M7)之间取得较好的折衷。切削时在孔中产生热,加上刀具的辗压,使切削刃变钝,并划出沟道,*终导致工具损坏。而较高的含钴量,使M35的抗热性增加,并能较长时间保持刀刃锋利。
此外,硬质合金钻头需要仔细地安装和使用,精确的同心度特别重要,因为不同心造成的侧向负荷会导致钻头崩裂。
应尽量在钻头旋转的机床(如加工中心)上使用微钻,因为加工中心的主轴能给予钻头正确的中心线定位,而车床上工件的偏心会导致钻头挠曲。因此,假如在车床上使用微钻,则必须把每个影响同心度的因素事先调整好,特别对硬质合金钻头更要注意,因其不能适应弯曲变形。
假如在车床上使用微钻,*好把刀具转塔的安装孔重新镗一刀,并且使用可调式镗孔刀夹,以便把钻头和工件的同心度调至*佳状态。
要把刀夹的跳动降至*小限度。为此,应可以选择热缩性刀夹,其次是液压刀夹。要求刀夹套筒端面处的*大跳动值在0.005~0.0076mm范围内。
消除初始定心误差
任何钻头工作时,开始几转至关重要。因为开始切削时,钻头承受偏心力。此外,工件表面的不规则形状会引起横向滑步,导致钻头弯曲、折断,或者至少是增大孔的偏差。
对于直径3mm以下的钻头,先用刚性好的定心钻打一个深度为1~2倍直径的初始孔。定心钻的钻尖*角应等于或大于*终钻孔的微钻*角。若定心钻的*角较小,则随后微钻切入时,两切削刃比良好先接触工件,容易引起崩刃。
如果不用定心钻,则可采用这样的方法:使微钻开始切入时的进给量远低于随后的正常进给量。例如钻头直径1.613mm,孔深12.7mm,正常进给量规定为0.0508mm/r,开始用0.0127mm/r的进给量推进0.254mm,也可推进到刃带开始接触工件,然后再转为正常进给。这种办法同样可防止钻头滑步。
微钻使用中的另一挑战是要尽量提高转速,以发挥生产潜力,但就*大转速规范而言,钻头往往走在机床的前面。有的机床在其*高转速下运行,仍未达到微钻的*佳切削速度。例如直径为1mm的钻头,切削速度达到91.44m/min,要求机床主轴转速达到28000r/min。
被加工材料的硬度,对于确定微钻切削速度和进给量的初始推荐值有很大影响。例如,用直径为1.32mm的整体硬质合金钻头加工1018低碳钢(20HRC)时,其切削速度选用91.44m/min,进给量选用0.038mm/r。但是该钻头加工塑料和合成材料时,切削速度可达198.12m/min,进给量达0.127mm/r。加工难加工材料(如镍基合金、钛合金)时,切削速度仅为15.24~18.29m/min,进给量仅为0.0305mm/r。
分步钻孔序列
通常,钻削微型深孔采用分步钻孔序列,即周期性退出钻头,以便折断切屑,防止堵塞。分步钻孔也有助于防止在孔底持续挤压,这一点在加工冷作硬化材料时尤为重要。
分步切削就得把钻头完全退出来,其实不然。若采用中断进给(几转或短时),同样可以断屑。另外,完全退出钻头还易产生喇叭口以及将部分切屑留在孔内,所以不得不对其再切削。这些情况都是不希望出现的。
许多问题往往发生在钻孔深度的最后20%这一段内。这是因为随着孔的逐渐加深、切屑排出十分困难的原因所致。具体的解决办法因工件及材料的状况而异。应用工程师应按具体情况确定分步切削方案。
谈到加工线路板的微钻,虽然从钻头材质和直径大小来看,同设计用于加工韧性材料的微钻十分相似,但是,两者的切削几何参数却有很大差异。
有些线路板钻头制成所谓“阶梯式柄部。”例如,一支直径为0.255mm的钻头,钻削孔深为2.55mm,槽全长也制成2.55mm,但钻头工作部分直径不直接从槽尾连接到直径3.175mm的柄部,而是通过一个1.275mm中间直径加以过渡。对此,钻削韧性材料时,钻头伸出长度应尽量短,所以加一段过渡直径的结构是不可取的。
从几何参数的角度来看,线路板钻头通常采用较大的螺旋角,沟槽截面尺寸也较其它微钻薄。而对于加工不锈钢和其它难加工材料的微钻,则采用较小的螺旋角和较厚的沟槽截面尺寸。他还指出,为了减小微钻上的应力,制成倒锥——直径向柄部方向减小——是十分必要的。倒锥量一般为0.005~0.127mm。因为钻头槽长常小于25.4mm,所以每25.4mm长度上的倒锥通常为0.0127~0.0254mm。只要钻孔有深度,就需要倒锥度。特别是对钛合金等加工中出现“回缩”的材料,若没有适当的倒锥度,钻头将被胶结在孔里。
为克服钛合金加工时“回缩”现象,钻头钻尖处径向跳动处于公差上限,这样在钻孔时扩张量较大,工件“回缩”也不至于抱住钻头。
内冷却效果好
实践证明,采用内冷却钻头对提高深孔加工的生产率十分有效。它的优点不仅在于把切削液直接送到钻尖处,起冷却作用,而且还能发挥强制排屑和帮助断屑的作用。在孔深大于3倍直径时,采用内冷却钻头加工时其效果更为明显,但迄今为止,内冷却钻头往往限于直径3mm以上的钻头。
小孔带来大挑战
在内冷却微钻的应用方面,你必须懂得所选用的冷却液和刀具几何角度能带来什么效果。
内冷却微钻的主要优点是可提高刀具寿命和切削速度。与不用冷却液的硬质合金钻头相比,内冷却钻头的刀具寿命提高到3倍,切削速度提高30%,具体随工件材料而异。
对于长期应用微钻的场合,对整个切削系统的每一个要素加以优化则显得格外重要。
对于小批量生产,可使用价格低廉的标准工具。但对于特定产品的大批量生产,生产车间应对整个工序流程进行分析和优化。
对于某种特定的工件材料,采用*的钻头、钻尖几何参数、槽长、螺旋角以及柄部的直径和长度,可以获得*佳的使用效果。若再对使用钻头的机床进行认真分析,将会使生产率进一步提高。
列举一个例子:在一台机床上,用一直径为0.0381mm的钻头加工一种不锈钢零件,工件和刀具的转速均为5000r/m,反向旋转。如对加工过程进行改进,调整机床的同心度,结果生产率成倍提高。
实践证明,要想提高生产率,就得花时间、金钱,加上积极工作。不花费力气,就不会有收获。